

Welcome to MozMeao Consultant Guidelines

These guidelines are meant to ensure consultants working for Mozilla Marketing
Engineering & Operations (MozMeao) have clear instructions to follow when
delivering code. Whenever possible these guidelines should be integrated into
contracts and statements of work.

Contents:

	Getting Started

	Questions For RFPs

	Communication

	Best Practices

	Browser Support

	Coding Style

	Testing

	Quality Assurance

	Design Assets

	Hosting

	Version Control

	Licensing

Getting Started

Prior to entering into a contract with a consulting company, please read through and familiarize
yourself with this documentation.

There are 3 relationships MozMeao can have with consultants.

	Fully Outsourced

	Fully Outsourced With Handover

	Partially Outsourced

It is important to define the type of relationship before creating a contract and SOW (Statement of Work).
The type of relationship informs what the constultants and Mozilla are responsible for.

Fully Outsourced

	All code written by consultant.

	Site not hosted on Mozilla resources.

	No expectations of MozMeao resources providing maintenance or feature devleopment.

Fully Outsourced With Handover

	All code written by consultant.

	Site may be hosted on Mozilla resources.

	Expectations of MozMeao resources providing maintenance or feature devleopment post launch.

Partially Outsourced

	Non production ready code is written by consultant.

	Site may be hosted on Mozilla resources.

	MozMeao resources finish development and are responsible for feature development post launch.

Questions For RFPs

It is a challenge to vet agencies during the RFP (Request for Proposal) stage. You may be including the development
of the ‘what’ in the RFP so it’s entirely possible that very few technical details will be known
at the RFP stage.

However there are a few questions you can include in the RFP to tease out
potential risks. Any risks should be mitigated by addressing them specifically in the SOW/Contract.

Questions To Include In An RFP

	Have they launched projects similar to what you are asking for? If so, include examples and include links to source code if available.

	Do they work on projects similar in scale to what you are asking for? If so, include examples and include links to source code if available?

	What will be the composition of the team working on this project? What are each person’s expertise and experience?

	Do they have engineers on staff who will be responsible for this work? If sub-contracted, who are the subcontractors?

	What is their preferred/proposed tech stack for this application?

Communication

Establish and agree upon communication channels in your kickoff meeting.

	
	Single point of contact:

	
	Establish a single point of contact at Mozilla responsible for communicating with the
consultants for the duration of the project.

	
	Define how the team will communicate including:

	
	Meeting cadence.

	Vidyo, Slack, IRC, Email, or other appropriate communication methods.

	Establish how progress on deliverables will be tracked and communicated.

	Reporting & tracking bugs.

	Establish documentation, what and where?

Best Practices

Websites you design and build for Mozilla as a consultant should adhere
to the same set of best practices used by Mozilla for its own websites.
Here are some practices you should follow throughout a project:

Progressive Enhancement

By Default, Mozilla websites should practice progressive enhancement [http://alistapart.com/article/understandingprogressiveenhancement].
Begin with simple, meaningful HTML. Add CSS and JavaScript as progressive
layers in a way that still falls back to usable, accessible content in older
browsers that don’t support the latest features or in the event of JavaScript
failing.

Don’t rely exclusively on JavaScript to serve static content. This is less
about catering to the few people who purposely disable JavaScript and more
about ensuring some fault tolerance as a best practice. While single-page
websites that render the entire screen using client-side JavaScript may have
a place, the reality is that 99% of the time they don’t need to be built in
such a way. If a JavaScript error occurs or someone is using an older web
browser, their experience should degrade gracefully. No one should be greeted
by an empty, white screen.

Feature detection

Going hand-in-hand with progressive enhancement, Mozilla websites should be
built using feature detection. Browser sniffing via the user agent string is
generally considered a bad practise when it comes to determining website
compatibility. Sites that rely on UA sniffing in order to deliver or block
content to certain browsers do not meet our quality standards. MDN has a great
article on how best to implement feature detection [https://developer.mozilla.org/docs/Learn/Tools_and_testing/Cross_browser_testing/Feature_detection] on websites.

Performance

Mozilla websites should strive to load quickly and be responsive on all types
of devices, whether it be on desktop, tablet or mobile. Favor server-rendered
content over client-rendered content. Develop a performance budget for your
pages during the design phase, and keep a close eye on areas such as page weight,
and the number of images, fonts, and CSS/JS assets that you use. Use services such
as Web Page Test [https://www.webpagetest.org/] or Lighthouse [https://developers.google.com/web/tools/lighthouse/] to monitor your website performance during
development.

A few general guidelines:

	On a 3G connection, aim for document complete in under 4 seconds, and for the page
to be fully loaded in under 6 seconds.

	Keep the number of custom web fonts (including bold and italic variants) to
a minimum. 3 web fonts in total (including bold/italic variants), is a good target
ceiling. Mozilla websites typically use a combination of Open Sans [http://www.opensans.com/] and Zilla Slab [https://github.com/mozilla/zilla-slab].

	Avoid large CSS frameworks such as Bootstrap or Foundation as they are by necessity
generic and can be heavy-handed.

	Client side JavaScript frameworks should be used as an enhancement, not as the
default backbone for delivering content. Large frameworks such as React or Angular
should be used only when they are jointly identified as being the appropriate
solution for a specific requirement.

	Images must be responsive through any combination of CSS, srcset, or SVG. Avoid
particularly large images or a large number of images on a page (even if each one
is relatively small). Production-ready images should also be optimized and/or
compressed as appropriate.

A good way to avoid a poorly performing web page is to set a performance budget.
An optimal goal is to deliver pages at or under a total of 600KB. A reasonable
breakdown for potential assets would be:

	Fonts - 200KB

	Images - 200KB

	JS - 100KB

	CSS - 20KB

Before you enter the prototyping phase of your project, agree a performance budget
for your pages and then monitor throughout the development stage.

Accessibility

Strive to make all Mozilla websites reasonably accessible to people with
disabilities and those using assistive technologies. In many cases this isn’t
a matter of adding accessibility features into a site, but simply not adding
obstacles that make the site harder to use. Accessible sites are better
for everyone, not only those with disabilities.

A few guidelines:

	Include descriptive alt text for any meaningful images in HTML.

	Include <label> elements in forms. Don’t use placeholder as a label.

	Navigation, forms, and interactive widgets like dropdown menus and modal windows
should be keyboard accessible.

	Ensure sufficient color contrast so text is readable for most users, including
those with color vision deficiencies.

	Text should be resizable for those who need larger type. Make reasonable allowances
for text to wrap and reflow when its size changes.

	Include ARIA [http://www.w3.org/TR/wai-aria/] attributes in HTML where appropriate.

Localization

Many Mozilla websites are localized in a large number of locales and different languages.
If your project has localization (l10n) considerations then there are a few guidelines to
follow:

	One of the biggest design challenges is ensuring text is both live and expandable.
Text included in images or videos is prohibitively time consuming (if not impossible) to
localize. The amount of actual text in a given message can vary greatly across languages,
meaning the height and width of the surrounding elements must be able to adapt. Precise
typography – such as controlled alignment, fitting text in an unusual shape, or specifying
where lines should break when text wraps – is often unrealistic. Expect the shape and size
of text blocks to change.

	Choose web fonts with broad character sets. Many display fonts only support Roman alphabets
and don’t have all the glyphs to correctly render Russian, Swedish, or Polish (for example).
Some languages have entirely different alphabets and no one font can serve them all, so
expect some languages to be rendered in an entirely different font. Also avoid over-reliance
on ALL CAPS or italics, as some scripts don’t lend themselves to these treatments.

	Be considerate about how pages may be read in right-to-left languages, specifically Arabic
and Hebrew. Those languages flip the direction of text but also tend to reverse the direction
of other UI elements, where objects on the right are seen “first.”

	Avoid symbolism or imagery that might be strongly identified with only one country or nationality
(e.g. a bald eagle representing the concept of freedom). People in other countries may not
understand such symbols, and at worst they may find them offensive.

Browser Support

Mozilla websites should be tested in a broad range of browsers, though
that doesn’t mean a site must look [http://dowebsitesneedtolookexactlythesameineverybrowser.com/] or behave [http://dowebsitesneedtobeexperiencedexactlythesameineverybrowser.com/] exactly the same in all
browsers. Sites should look good and work well in any modern browser, even if
it’s not perfectly identical.

The current generation of browsers (versions released within the
last few years) are all pretty even in their support of most modern web
standards, but many people still use older browsers and deserve equal
access to information. Consider following a system of graded browser support [https://github.com/yui/yui3/wiki/Graded-Browser-Support]
wherein the oldest or least capable browsers can still access all the content
and essential functionality, just without all the bells and whistles better
browsers can enjoy. If you use a progressive enhancement methodology, support
for older/other browsers may already be a given.

Unless there are specific reasons not to, you should look to fully support
(at the very least) the latest versions of all major browsers (Firefox, Chrome,
Safari, Opera & Edge), as well as the last 2 versions of Internet Explorer (10 & 11).
All other browsers can have degraded support.

Don’t use proprietary features supported only by a single browser unless
what you’re making is a demo of that specific feature. Be mindful when you use
emerging standards supported in some browsers but not others and include fallbacks
for less capable browsers. Check MDN [https://developer.mozilla.org] or CanIUse [http://caniuse.com] for compatibility info. If you
use vendor prefixes in CSS, include the prefixes for all supporting browsers as
well as the unprefixed standard.

Finally, don’t rely on user agent sniffing to determine which browsers can and
can’t access a website or use its features. Instead, favor feature detection that
allows older browsers to degrade gracefully in what they show.

Coding Style

Code you deliver to Mozilla as a consultant should be written according to
the same standards as code written by any other Mozilla developer. Plan for
your code to be maintained by other coders and comment liberally.

Standardizing a common style for writing and formatting code helps a team
or organization maintain a sensible code base. The goal is consistency and
predictability so that any coder can view the work of another coder and
quickly follow along. We have documented style guides [http://mozweb.readthedocs.org/latest/reference] elsewhere that go
into greater depth, but we’ll also summarize the main points here for
some common languages.

Important

We urge you to read through the Mozilla Webdev Bootcamp [http://mozweb.readthedocs.org/] docs for more
detailed guidelines.

General

	Use spaces for indentation. Never use tabs – history has shown that
we cannot handle them.

	Use four spaces to indent most languages, but two spaces in HTML. HTML lends
itself to a lot of nested elements and indenting each level four spaces can
lead to long lines and messy formatting.

	Wrap lines at 80 characters when possible. HTML is often the exception here
as well.

	Eliminate trailing whitespace at the end of lines. Blank lines should have
no spaces.

	Include a single blank line at the end of files.

Note

Using EditorConfig [http://editorconfig.org/] in your project can help enforce most of the above
rules automatically. You can see an example .editorconfig file here [https://github.com/mozilla/bedrock/blob/master/.editorconfig].

Python [http://mozweb.readthedocs.org/latest/reference/python-style.html]

	Follow PEP8 [http://www.python.org/dev/peps/pep-0008/].

	Follow Pocoo [http://www.pocoo.org/internal/styleguide/]’s extensions to PEP8, although these are a little less strictly
enforced across Mozilla projects.

	Check your code against a linting tool. We highly recommend Flake8 [http://flake8.readthedocs.org/latest/] for this.

	Use single quotes unless double (or triple) quotes would be an improvement.

	To continue a new line use a () not \.

	Indent code with either a hanging indent or a 4 space indent on the next line.

HTML [http://mozweb.readthedocs.org/latest/reference/html-style.html]

	Use HTML5, with the appropriate doctype: <!DOCTYPE html>

	Omit XML-style trailing slashes:

	Use lowercase for tags and attributes.

	Use double quotes for attribute values.

	Validate your markup [http://validator.w3.org/].

	Avoid inline or embedded CSS or JavaScript.

	Indent nested elements two spaces; don’t use tabs.

	Use the most semantically valuable element suited to the content.

CSS [http://mozweb.readthedocs.org/latest/reference/css-style.html]

	Use a linting tool such as Stylelint [https://stylelint.io/].

	Multi-line rules, not single line.

	Four space indentation; don’t use tabs.

	Order declarations alphabetically (with some exceptions).

	Use the simplest, least specific selector possible.

	Make meaningful names, not presentational.

	All lowercase for classes and IDs, no camelCase.

	ID selectors are allowed but use them sparingly and appropriately.

	Don’t use !important.

	Use unitless line-height.

	Group related rules into sections.

	Order sections and rules from general to specific.

	Validate! [http://jigsaw.w3.org/css-validator/]

JavaScript [http://mozweb.readthedocs.org/latest/reference/js-style.html]

	Use a linting tool such as ESLint [https://eslint.org/].

	Assign each variable on a newline, not comma-separated.

	Use [] to assign a new array, not new Array().

	Use {} for new objects, as well.

	Always use semicolons.

	Always use ===.

	Always use single quotes.

	Exception: "Don't escape single quotes in strings. Use double quotes."

	Cache regex into a constant.

	Try to avoid ternaries.

	Check for truthiness, not lack of falseness.

Testing

All code provided by a third party that is intended to be run in a
production environment should be adequately tested.

Testing is generally split between two distinct styles:

	Unit tests can be set to run automatically against pull requests
in GitHub using CI.

	Functional tests can be set to run automatically on deployment and
run in multiple browsers.

Unit Testing

	Backend code should be unit tested. For Python we suggest using pytest [https://docs.pytest.org/].

	JavaScript code should also be unit tested. When run in the browser, we

suggest using Karma [http://karma-runner.github.io/] and Jasmine [https://jasmine.github.io/]. For Node, either Mocha [https://mochajs.org/] or
Jest [https://facebook.github.io/jest/] are good options.

Functional Testing

	For cross-browser functional testing we suggest using Selenium [https://docs.seleniumhq.org/]

with pytest-selenium [https://pypi.python.org/pypi/pytest-selenium].

Quality Assurance

Who is doing QA and how should be determined prior to a signing a contract or SOW.

Generally there are 2 approaches for QA used with consultants, the first being the most common:

	Combined QA, Mozilla + Consultant

	Consultant QA Only

Combined QA

Consultants are expected to deliver working code, however in many cases they do not have the same
standards for QA or expertise to fully deliver a project. In most circumstances we will want to have
MozMeao provide additional QA reviews and testing.

In this scenario you should do the following.

	
	Request a MozMeao QA Resource:

	
	They should review the contract and SOW and determine their level of involvement.

	They should develop a QA plan that is reviewed and agreed upon by Mozilla and the consultant.

Consultant Only QA

If the consulting firm is large enough and the project is fully outsourced they may handle the
entirety of the QA process. This must be defined in the SOW along with any project specific areas of
concern. These areas will be specific to the project but some areas to think about are listed below.

	Browser support.

	Mobile support.

	Accessibility support.

	Verifying proper analytics behavior.

	Testing integration with any 3rd party services.

	Load testing.

Even in circumstances where the consulting firm is handling the entirety of the QA, a method for
Mozilla submitting bugs should still be established at Kickoff.

Design Assets

Design assets you deliver to Mozilla as a consultant should be provided
in an agreed format and should be ready for a developer to turn into
production ready code.

Things to consider include:

	The ideal design mockup should be an HTML prototype that can be viewed
and resized in a web browser.

	If an HTML prototype is not provided, either a Sketch of Photoshop
static mockup is acceptable.

	If a static mockup is provided, both a desktop and mobile representation
of a page should be included.

	If image assets intersect with the edge of an artboard in a static
mockup, make sure to include those assets uncropped in the document,
so a developer can export and use them in context of a responsive web
page that can be larger than the fixed sized artboard.

	Image assets should be included in an appropriate format. We prefer
SVG whenever possible, but if an image includes many paths or gradients
then sometimes a PNG or JPG makes more sense. If non-vector images are
provided, high resolution versions should be included.

Hosting

There are 2 common scenarios for hosting a project developed by consultants.

	Consultant Hosted

	Mozilla Hosted

Consultant Hosted

Consultant hosted means the 3rd party is taking responsibility for hosting the website. The
project is not hosted on Mozilla hardware and Mozilla is not responsible for either
performance or uptime.

The following responsibilities should be outlined in a SOW:

Consultant Responsible

	
	Billing, either direct or pass through.

	
	Include duration of hosting.

	Provide estimates of all costs (hosting/bandwidth/other) including any possible overages.

	
	Ensuring hosting is performant.

	
	Ensure project can handle expected traffic.

	Ensure uptime for duration of project.

Mozilla Responsible

	
	Domain Configuration:

	
	Registration of any domains.

	DNS & SSL for any domains.

Mozilla Hosted

Mozilla hosted means the project is hosted on Mozilla infrastructure. Mozilla is responsible for providing
performant hosting.

The following responsibilities should be outlined in a SOW:

Consultant Responsible

	
	Delivering Code:

	
	Deploying and configuring code that works properly on Mozilla’s Infra.

	Ensuring project works as intended on Mozilla Infra.

Mozilla Responsible

	
	Providing Infrastructure & Documenting Environments & Deployment:

	
	Registration of any domains.

	DNS & SSL for any domains.

	Providing (if needed) dev, stage and production hosting.

	Documentation on how code will be deployed to each environment and by whom.

	Any specific implementation details specific to Mozilla infra.

Version Control

All code provided by a third party must reside in version control and be made available to Mozilla.

The following details should be decided upon and outlined in the SOW.

	
	Using Version Control:

	
	Project code must be in version control.

	Code should reside on Github unless another platform has been specifically agreed to.

	Github usage and workflow should
follow WebDev guidelines [http://mozweb.readthedocs.org/en/latest/reference/git_github.html] .

	Private repositories are allowed but must be mutually agreed upon.

	Access to repository should be granted to Mozilla at kickoff.

	At project completion Mozilla must have full admin to the repository or the repository
must be transferred to Mozilla.

Licensing

	All code provided in a project should be licensed under the MPL version 2.0 [https://www.mozilla.org/en-US/MPL/2.0/].

	If a project contains any third-party libraries or frameworks, that third-party code
should also contain an open source license that is compatible with the MPL version 2.0 [https://www.mozilla.org/en-US/MPL/2.0/].

	If a project requires any proprietary code or licensing, those details should be discussed
early, before development begins.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to MozMeao Consultant Guidelines

 		
 Getting Started

 		
 Questions For RFPs

 		
 Communication

 		
 Best Practices

 		
 Progressive Enhancement

 		
 Feature detection

 		
 Performance

 		
 Accessibility

 		
 Localization

 		
 Browser Support

 		
 Coding Style

 		
 General

 		
 Python

 		
 HTML

 		
 CSS

 		
 JavaScript

 		
 Testing

 		
 Unit Testing

 		
 Functional Testing

 		
 Quality Assurance

 		
 Combined QA

 		
 Consultant Only QA

 		
 Design Assets

 		
 Hosting

 		
 Consultant Hosted

 		
 Mozilla Hosted

 		
 Version Control

 		
 Licensing

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

